Zack Saadioui
8/27/2024
1
numpy
1
pandas
1
torch
1 2 3 4 5 6 7 8 9 10 11 12 13 14
from pathlib import Path import PyPDF2 def load_pdfs(directory): pdf_files = list(Path(directory).rglob('*.pdf')) # gets all PDF files data = [] for pdf_file in pdf_files: with open(pdf_file, 'rb') as f: reader = PyPDF2.PdfReader(f) for page in reader.pages: data.append(page.extract_text()) return data training_data = load_pdfs('./data') # Point to your PDF path
1 2 3 4 5 6 7 8 9
for epoch in range(num_epochs): model.train() # Prepare model for training for data_batch in training_data: # Your training code here optimizer.zero_grad() # Reset gradients outputs = model(data_batch) loss = loss_function(outputs, targets) loss.backward() # Backpropagation optimizer.step() # Update model's weights
1 2 3
learning_rate = 0.001 batch_size = 32 num_epochs = 10
1
TensorBoard
1
2
3
4
5
6
7
python
from ollama import Ollama
model = Ollama(
model='mistral',
lora_r=4,
lora_alpha=8
)
Copyright © Arsturn 2025