Zack Saadioui
8/26/2024
1
VectorStoreIndex.from_documents1
VectorStoreIndex.from_documents1
VectorStoreIndex1
from_documents1
2
bash
pip install llama-index1
VectorStoreIndex.from_documents1
VectorStoreIndex1
SimpleDirectoryReader1
2
python
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader1
SimpleDirectoryReader1
from_documents1
2
3
python
documents = SimpleDirectoryReader("../../examples/data/paul_graham").load_data()
index = VectorStoreIndex.from_documents(documents)1
show_progress=True1
2
python
index = VectorStoreIndex.from_documents(documents, show_progress=True)1
Node1
Node1
from_documents1
Node1
Node1
TextNode1
2
python
from llama_index.core.schema import TextNode1
2
3
4
python
node1 = TextNode(text="<text_chunk>", id_="<node_id>")
node2 = TextNode(text="<text_chunk>", id_="<node_id>")
nodes = [node1, node2]1
2
python
index = VectorStoreIndex(nodes)1
Node1
StorageContext1
VectorStoreIndex1
2
3
4
5
6
python
from llama_index.core.schema import IndexNode
query_engine = other_index.as_query_engine()
obj = IndexNode(text="A query engine describing X, Y, Z.", obj=query_engine, index_id="my_query_engine")
index = VectorStoreIndex(nodes=nodes, objects=[obj])
retriever = index.as_retriever(verbose=True)1
VectorStoreIndex.from_documentsCopyright © Arsturn 2025